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SUMMARY
Intestinal epithelial stem cells (IESCs) control the intestinal homeostatic response to inflammation and regeneration. The under-

lying mechanisms are unclear. Cytokine-STAT5 signaling regulates intestinal epithelial homeostasis and responses to injury. We

link STAT5 signaling to IESC replenishment upon injury by depletion or activation of Stat5 transcription factor. We found that

depletion of Stat5 led to deregulation of IESC marker expression and decreased LGR5+ IESC proliferation. STAT5-deficient mice ex-

hibited worse intestinal histology and impaired crypt regeneration after g-irradiation. We generated a transgenic mouse model

with inducible expression of constitutively active Stat5. In contrast to Stat5 depletion, activation of STAT5 increased IESC prolif-

eration, accelerated crypt regeneration, and conferred resistance to intestinal injury. Furthermore, ectopic activation of STAT5 in

mouse or human stem cells promoted LGR5+ IESC self-renewal. Accordingly, STAT5 promotes IESC proliferation and regeneration

to mitigate intestinal inflammation. STAT5 is a functional therapeutic target to improve the IESC regenerative response to gut

injury.
INTRODUCTION

Adult stem cells (SCs) retain the capacity of self-renewal

and differentiation to generate multiple differentiated

cell types (Barker et al., 2007). Thus, these adult SCs are

utilized to functionally regenerate damaged tissues or

reverse organ failure (Yui et al., 2012). However, SCs

that are deregulated during inflammation, infection, or

tissue regeneration may turn into invasive cancer SCs

(CSCs) (Beachy et al., 2004). Accordingly, tight spatial-

temporal regulation of adult SC behaviors may confer

injury resistance, tissue regeneration, or tumor suppres-

sion, whereas SC deregulation may cause tumor initiation

and/or recurrence (Merlos-Suárez et al., 2011). However,

the lack of molecular markers that reflect the fine modu-

lation of SC homeostatic response to injury or regenera-

tion significantly hinders the development of regenerative

medicine and cancer therapy.

Intestinal epithelial SCs (IESCs) are roughly categorized

as either quiescent or active IESCs based in part on the

expression of specific markers, including LGR5, Olfm4,

Ascl2, BMI1, MTERT, and LRIG1 (Barker et al., 2007; Mont-
Stem Cell
gomery et al., 2011; Powell et al., 2012; Sangiorgi and Ca-

pecchi, 2008). They are believed to dynamically switch

from one type to the other in response to inhibitory and

stimulatory signals caused by cytokines, hormones, or

growth factors (Li and Clevers, 2010). Active IESCs, thema-

jority of which are LGR5+ crypt base columnar cells (CBCs),

maintain intestinal lineage development and self-renewal

with rapid cycling (Barker et al., 2007), and are highly sen-

sitive to intestinal injury (Tian et al., 2011). In contrast,

slow-cycling IESCs (label-retaining cells [LRCs]), which

are present at the ‘‘+4 crypt position,’’ contribute to ho-

meostatic regenerative capacity, particularly during recov-

ery from injury (Takeda et al., 2011). These LRCs express

markers such as BMI1, HOPX, LRIG1, and/or DCLK1, and

can convert to rapidly cycling IESCs in response to injury

(Yan et al., 2012). Signal transduction pathways, including

WNT, NOTCH, TGF-b/BMP, Hedgehog, nuclear hormone

receptor, and JAK-STAT, temporally and spatially regulate

IESC homeostasis in cell-based tissue self-renewal and

regeneration (Crosnier et al., 2006). Recent studies indi-

cated that IESCs can regulate the intestinal homeostatic

response to infection and inflammation (Buczacki et al.,
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Figure 1. Stat5 Depletion Leads to Deregulation of IESC Markers
STAT5�/� mice were generated using Villin Cre-mediated recombination to delete the Stat5 locus in IECs.
(A) Ileal IECs were isolated from STAT5�/� and STAT5+/+ mice. STAT5, CYCLIND1, LGR5, LRIG1, and BMI1 proteins were identified by
immunoblotting. Signal intensity was determined by densitometry. Results are expressed as mean ± SEM (n = 5mice per group; **p < 0.01).

(legend continued on next page)
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2013). However, the mechanisms underlying this cellular

regulation remain largely unknown.

JAK-STAT signaling was recently found to mediate IESC

self-renewal and differentiation in response to bacterial

infection and tissue impairment in Drosophila (Jiang

et al., 2009). Compromised JAK-STAT signaling caused

loss of IESC quiescence (Buchon et al., 2009), whereas

JAK-STAT activation produced extra IESC-like and progeni-

tor cells (Lin et al., 2010). However, the subsequent molec-

ular events by which STAT signaling regulates adult IESCs

are poorly defined in mammals. STAT5 activity, as well as

its target genes, was predominantly associated with long-

term self-renewal and maintenance of hematopoietic

(Kato et al., 2005), mammary (Vafaizadeh et al., 2010),

and embryonic SC (ESC) phenotypes (Kyba et al., 2003).

Temporally controlled STAT5 expression and activation

increasedmammary SC proliferation, thereby contributing

to the functional tissue formation upon chronic in-

flammatory injury (Vafaizadeh et al., 2010). We previously

reported that epithelial STAT5 signaling is required for

intestinal epithelial cell (IEC) integrity and homeostatic

response to gut injury (Gilbert et al., 2012). Growth hor-

mone (GH) and granulocyte macrophage-colony stimu-

lating factor (GM-CSF) can protect IECs against inflamma-

tory injury through activation of STAT5 (Han et al., 2007,

2010). These findings suggest that STAT5 signaling medi-

ates IEC repopulation through regulation of somatic IESC

proliferation or differentiation. Here, utilizing Stat5-modi-

fied transgenic mouse models and mouse or human SCs,

we characterized the role of STAT5 in IESC homeostasis

and response to injury, and deciphered the molecular ma-

chineries of STAT5 activation in protecting gut injury.

Furthermore, our findings suggest that STAT5 activation

could be used as a functional marker for IESC intervention

of gut injury.
(B) In situ hybridization analysis for Ascl2 in intestinal crypts. Ascl2+

IESCs per SC zone (n = 3 mice per group; **p < 0.01).
(C) IEC proliferation was determined by BrdU incorporation as measure
and represented as box-and-whisker plots (black lines: medians; whi
(D) Top panel: ileal frozen sections from LGR5 reporter mice were
STAT5 distribution was determined by IH staining. Arrow indicates
Antibody specificity was confirmed by lack of staining in STAT5-deficie
400, n = 3 mice.
(E) Lgr5-eGFP-IRES-CreERT2 (Lgr5CreER;STAT5+/+) and VillinCreERT2-
were given Tam for 5 days. IF was used to detect GFP and EdU express
IESCs in the SC zone were counted and are represented as box-and-whis
or 6 mice per group; **p < 0.01).
(F) IECs were dissociated and the frequency of LGR5 GFP+ and EdU+

(n = 6 mice per group; *p < 0.05, **p < 0.01).
(G) Ileal frozen sections from STAT5�/�mice were immunostained with
represent ileal crypt length; n = 5 mice per group.
Scale bars, 50 mm. See also Figure S1.
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RESULTS

Depletion of Stat5 Leads to Deregulation of IESC

Markers

STAT5 has been demonstrated to govern hematopoietic SC

fate and lineage commitment (Kato et al., 2005). Here, we

sought to determine whether STAT5 signaling influences

adult IESC activity. We previously reported that constitu-

tively IEC STAT5-deficient mice (VilCre;Stat5f/f, hereafter

called STAT5�/�) displayed dampened intestinal barrier

regeneration and predisposition to intestinal inflamma-

tion (Gilbert et al., 2012). Infection, inflammation, and

tumorigenesis occur mainly in the ileum or colon (Boland

et al., 2005). Thus, we focused on the effects of STAT5

signaling on ileal and colonic IESCs. We first isolated IECs

from STAT5�/� mice and littermate controls (Stat5f/f,

STAT5+/+) to test the expression and distribution of IESC

markers using immunoblotting, in situ hybridization,

and immunofluorescence (IF). These analyses indicated

that depletion of IEC STAT5markedly decreased the expres-

sion of active IESC markers (LGR5, Ascl2, and Olfm4) (Fig-

ures 1A and 1B and Figure S1A available online) with

concordant reduction of bromodeoxyuridine (BrdU) incor-

poration in the ileal crypt IECs (Figure 1C) andCBCs (insets

in Figure 1C). To assess the effects of STAT5 signaling on

LGR5+ IESCs (Kim et al., 2012), we generated inducible

IEC STAT5-deficient mice with an Lgr5 knockin reporter

gene (Lgr5-eGFP-IRES-CreERT2, hereafter called Lgr5CreER;

Figure S1B). To investigate STAT5 expression in CBCs, we

analyzed intestinal STAT5 and LGR5 GFP in Lgr5CreER;

STAT5+/+ mice. STAT5+ IECs were robustly colocalized

with LGR5 at the crypt base in the small and large bowel

(Figures 1D, S1C, and S1D). Both IF and immunohisto-

chemistry (IH) staining revealed that STAT5was distributed

in the intestinal crypt and transit-amplifying (TA) zone,
IESCs were counted in 200 crypts and results are expressed as Ascl2+

d by IH. Results are expressed as BrdU+ IECs per crypt or per SC zone
skers: 5%–95% percentiles; n R 6 mice per group; **p < 0.01).
stained with STAT5 and LGR5-GFP double IF. Bottom panel: ileal
the STAT5 expression gradient from the crypt to the villus tip.
nt intestine (Neg). TA, transit amplifying. Original magnification3

Lgr5-eGFP-IRES-CreERT2-Stat5f/f (VilCreER;Lgr5CreER;Stat5f/f) mice
ion in ileal crypts. LGR5 GFP+ and EdU+ IESCs are shown. LGR5+EdU+

ker plots (black lines: medians; whiskers: 5%–95% percentiles; n = 4

IECs was measured by FACS. Results are expressed as mean ± SEM

anti-BMI1 (red), DCLK1 (red), LRIG1 (red), and DAPI (blue). Scales
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and STAT5 expression displayed a gradient from the crypt

to the villus tip (see arrow direction in Figure 1D). These

data clearly indicate that both LGR5+ CBCs and LGR5�

IESC have strong STAT5 expression, suggesting that

STAT5 plays a role in CBCs, other IESC subpopulations,

and progenitors. Using LGR5-GFP mice, we found that

inducible depletion of IEC STAT5 markedly reduced

LGR5+ IESCs (Figures 1E, 1F, and S1E). Double IF staining

and fluorescence-activated cell sorting (FACS) analysis

with LGR5-GFP and 5-ethynyl-20-deoxyuridine (EdU) la-

beling showed a reduced LGR5+ IESC proliferation upon

STAT5 depletion (Figures 1E, 1F, and S1E). These data

were indicative of the requirement of STAT5 signaling for

CBC proliferation. Consistently, depletion of Stat5 led to

decreased percentage of EdU+ TA cells at the upper ‘‘+4’’

position (44.1% ± 5% in LgrCreER;STAT5+/+ mice versus

29% ± 3% in VilCreER;LgrCreER;Stat5f/f mice; p = 0.015,

n R 4 mice per group). In contrast to the reduced CBC

and TA cell proliferation, STAT5 deficiency expanded the

quiescent IESC pool as measured by IF staining of putative

markers of quiescent IESC—BMI1 (Sangiorgi and Capecchi,

2008), LRIG1 (Powell et al., 2012), andDCLK1 (Westphalen

et al., 2014; Figure 1G)—and remarkably increased the

expression of these quiescent IESC markers (Figures 1A

and 1G). Similarly, depletion of colonic IEC STAT5 caused

suppression of active IESCs and expansion of quiescent

IESC markers (Figures S1F–S1H). Therefore, intestinal

Stat5 depletion is associated with deregulation of IESC

markers, suggesting that IEC STAT5 signaling is required

for maintenance of adult IESC homeostasis.

Depletion of Stat5 Impairs Crypt Regeneration to

Deteriorate Radiation-Induced Mucositis

Dose-controlled radiation injury functionally distin-

guishes the IESC regenerative response (Hua et al., 2012;

Metcalfe et al., 2014). After a high-dose exposure, CBCs un-
Figure 2. Stat5 Depletion Dampens IESC Regenerative Activity an
(A and B) STAT5�/� and STAT5+/+ mice were exposed to g radiation (8.
after an initial 8.5 Gy radiation (A), and the RIS and crypt regenerati
expressed as mean ± SEM (n = 6 mice per group; **p < 0.01).
(C–E) IEC STAT5 was depleted by intraperitoneal (i.p.) administration
controls were injected with sunflower oil. RIS and mucosal ulceration
mice with constitutive or inducible depletion of IEC STAT5 (STAT5�

designated by brackets in (C). Results are expressed as the mean ± S
(F) Apoptotic IECs in the regenerated ileal crypts were detected by TU
Results are expressed as the mean ± SEM (n = 5 mice per group; **p
(G) STAT5�/� and STAT5D/� mice were exposed to 8.5, 12, or 15 Gy r
BrdU and sacrificed 3 hr later. The percentages of proliferative IECs i
ration. Results are expressed as the mean ± SEM (n = 5 mice per grou
(H) Lgr5CreER;STAT5+/+ and VilCre;Lgr5CreER;Stat5f/f mice were expose
LGR5 GFP (green) and lysozyme (red). Representative images are sho
Scale bars, 50 mm. See also Figure S2.
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dergo rapid apoptosis or mitotic death, whereas quiescent

IESCs can be active and regenerate highly proliferative

crypts (‘‘microcolonies’’) (Potten, 2004; Yan et al., 2012).

Thus, we exposed both STAT5�/� and control mice to

different doses of g radiation (8.5, 12, or 15 Gy) and inves-

tigated IESC regenerative activity 3.5 days later. After expo-

sure to 8.5 Gy radiation, which induces apoptosis and hy-

perproliferation of CBCs, but does not activate quiescent

IESCs (Montgomery et al., 2011), STAT5�/� mice displayed

moderate depletion of crypt numbers and mild crypt hy-

perplasia (Figure 2A), and pronounced flattened/blunt villi

in jejunum compared with controls (Figure S2A). A dose of

12 Gy radiation led to intestinal mucositis in all mice (Fig-

ure 2B). STAT5�/� mice exhibited worse mucosal injury

with a higher radiation injury score (RIS) and mucosal

ulceration compared with controls (Figure 2B). Quiescent

IESCs have been suggested to represent an IESC subpopula-

tion that is committed to differentiation to Paneth cells or

endocrine lineages, and can replenish the IESC pool upon

injury (Buczacki et al., 2013). We found that depletion of

STAT5 led to increased ‘‘immature’’ crypts in the ileum

and jejunum, which were characterized by impaired regen-

eration and repair of irradiation-induced mucosal injury.

The ‘‘immature’’ crypt regeneration coincided with an

increased number of lysozyme+ Paneth cells (Figures 2B,

S2B, and S2C), suggesting that quiescent IESCs could

be activated in STAT5�/� mice. To rule out the influence

of IEC barrier differentiation defects in STAT5�/� mice

on the radiation response, we crossed Villin-CreERT2

with Stat5f/f mice to inducibly deplete IEC STAT5 using

tamoxifen (Tam)-dependent Cre recombinase activation

(STAT5D/�). LGR5+ CBCs can be greatly diminished after

12 Gy radiation, but a fraction of surviving LGR5+ CBCs

may overcome the G1 arrest to reenter the cell cycle after

DNA damage repair is completed (Hua et al., 2012; Van

Landeghem et al., 2012). We thus escalated the radiation
d Increases Radiation-Induced IESC Injury
5 or 12 Gy). Crypt proliferation in the ileum was determined 3.5 days
on were determined 3.5 days after 12 Gy radiation (B). Results are

of Tam (1 mg/mouse/day) for 5 consecutive days; simultaneously,
(C and D) and crypt regeneration (C and E) were determined in the
/� or STAT5D/�) at 3.5 days after 15 Gy radiation. Ulcer area is
EM (n R 6 mice per group; *p < 0.05).
NEL staining and expressed as TUNEL+ IECs per regenerated crypt.
< 0.01). Representative images are shown.
adiation. At 3.5 days after radiation, mice were administered with
n the crypts or regenerated crypt were measured by BrdU incorpo-
p; *p < 0.05).
d to 15 Gy radiation. Ileal frozen sections were double stained with
wn (n = 3 mice per group).
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dose to 15 Gy and investigated the inducible depletion of

STAT5 upon intestinal crypt regeneration (Hua et al.,

2012). Consistently, inducible STAT5 depletion led to a

significantly worse RIS and more severe mucosal injury

compared with Tam-treated littermate controls (STAT5+/+)

(Figures 2C and 2D). STAT5D/�mice also contained a signif-

icantly higher number of ‘‘immature’’ regenerated crypts

(Figures 2C and 2E). Interestingly, by TUNEL staining, we

found that the regenerative crypts with STAT5 deficiency

displayed more apoptotic IECs than control mice after irra-

diation (Figure 2F), suggesting that STAT5 plays a nonre-

dundant role in controlling crypt regeneration during

injury. BrdU incorporation confirmed that 8.5 Gy radiation

reduced intestinal crypt epithelial proliferation in the

STAT5�/� mice compared with littermates (Figure 2G).

However, 15 Gy radiation induced more crypt epithelial

regenerative proliferation with greater apoptotic IECs in

the STAT5D/� mice compared with Tam-treated littermate

controls (Figures 2F, 2G, and S2D). These data indicate

that STAT5 deficiency alters the regenerative capacity of

IESCs, leading to ‘‘immature’’ crypt regeneration after

irradiation. IEC STAT5-deficient mice with the Lgr5 re-

porter gene were then exposed to 15 Gy irradiation (Fig-

ure 2H). LGR5 GFP and lysozyme double IF staining

showed that inducible depletion of STAT5 reduced LGR5+

IESCs, whereas lysozyme+ Paneth cells were coincidently

increased in the ‘‘immature’’ regenerated crypts compared

with littermate controls (Figure 2H), indicating increased

radiation-induced damage in STAT5D/� mice. These regen-

erated crypts had less Ascl2 abundance than controls (Fig-

ure S2E), suggesting that STAT5 signaling is required for

LGR5+ IESC regeneration upon radiation injury. Together,

these data indicate that depletion of STAT5 impairs crypt

regeneration, and STAT5 is indispensable for IESC regener-

ative activity to repair mucosal injury. We next tested

the possible mechanisms of how STAT5 controls IESC

regeneration.

Depletion of Stat5 Inhibits CBC Activity, Leading to

Reduced Crypt Expansion

To recapitulate STAT5 loss-of-function (LOF) phenotypes

in vitro, we isolated mouse intact crypts from STAT5�/�

and STAT5D/� mice, and generated intestinal enteroids to

observe crypt formation over time. We found that enter-

oids from STAT5�/� mice were not capable of budding

and forming crypts with the same enriched conditions as

control enteroids (Figures 3A and S3A). The enteroids

with Tam-inducible STAT5 depletion in IEC exhibited

limited crypt expansion and formation (Figures 3A and

3B), indicating that STAT5 LOF dampened CBC self-

renewal and differentiation. Intriguingly, the expression

of Bmi1 was significantly increased by STAT5 depletion,

whereas Lgr5 expression remained unaltered in the enter-
214 Stem Cell Reports j Vol. 4 j 209–225 j February 10, 2015 j ª2015 The A
oids as assessed by quantitative PCR (qPCR; Figure S3B),

suggesting that depletion of STAT5 could lead to BMI1+

IESC activation. However, using VilCreER;Lgr5CreER;

Stat5f/f mice, we found that inducible STAT5 depletion re-

sulted in reduced LGR5-GFP+ crypt buds in the enteroids

(Figure 3C). Therefore, depletion of STAT5 inhibits CBC

activity.

Transgenic Mice with Inducible Expression of a

Gain-of-Function Stat5 Variant

To study STAT5 gain of function (GOF) upon IESC response

to gut injury, we generated an inducible transgenic mouse

model with a GOF variant of Stat5a (termed icS5) using

bacterial artificial chromosome (BAC) recombineering

(Muyrers et al., 1999). We selected the BAC RP23-362J7,

which encompasses the entire endogenous Stat5a and

Stat5b. The transgene vector was constructed with the

appropriate 30 and 50 homologous arms and the enhanced

and prolonged active Stat5a variant (FLAG tagged at the

C terminus). Truncated human CD2 was used as a trans-

genic reporter marker (Figure S4A). We then performed

RecE and RecT recombination of the construct into the

BAC. The final BAC harbored the icS5-FLAG-IRES-hCD2

construct, flanked by LoxP sites in an antisense orientation

within the endogenous Stat5a locus (Figure S4A). This al-

lowed expression of the icS5 construct under regulation

of the endogenous promoter after Cre recombination (Fig-

ure 4A). The recombination of the construct into the BAC

was confirmed by two independent Southern blot strate-

gies (for further details, see the Supplemental Experimental

Procedures and Figures S4B–S4D).

STAT5 Activation Increases CBC Proliferation and

Expands the IEC Progenitor Pool, Conferring

Resistance to Radiation-Induced Intestinal Injury

We next crossed icS5 mice with Rosa26-CreERT2 mice

(RsCreER;icS5) to induce Cre-LoxP inversion (Figure 4B).

The RsCreER;icS5 mice were then treated with Tam,

and recombination of the icS5 transgene into the ‘‘on’’

orientation was confirmed by Southern blot (Figure S4B).

Genomic recombination was detected in all organs

tested, and full activation of the transgene reflected a

monoallelic expression of the icS5 GOF variant, which is

very sensitive to cytokine signaling. In liver, lung, kidney,

bone marrow, and splenocytes, Southern blotting (Fig-

ure S4E) or FACS displayed hCD2, the reporter marker

that is transcriptionally linked to icS5 preceded by an

IRES sequence (Figure S4F).We also tested STAT5 activation

(PY-STAT5) in the intestine. Ileal sections were stained

with PY-STAT5 IH (Figure 4B) or the total proteins from

isolated ileal IECs were immunoblotted for STAT5a or

PY-STAT5 (Figure 4C). We found that STAT5 was robustly

activated in IECs from Tam-induced RsCreER;icS5 mice
uthors



Figure 3. Stat5 Depletion Reduces IESC
Proliferation
(A and B) Ileal crypts were isolated from
Stat5f/f, VilCreER;Stat5f/f, and VilCre;Stat5f/f

mice, and resuspended in Matrigel with EGF,
Noggin, and R-spondin for culture from day
1 through day 8. Then, 4-hydroxy-tamoxifen
(4HT, 1 mM) was used to induce STAT5
depletion in the enteroids. Enteroids were
cultured in six parallel wells per mouse for
each experiment (n = 4 mice per group). The
number of crypt buds was counted daily in a
minimum of 10 enteroids per well with
either persistent or 4HT-induced STAT5
depletion (�/� or D/�).
(A) Results are expressed as a graph of crypt
expansion, showing the number of crypt
buds versus time. One-way ANOVA was used
to test for variance of two groups (**p <
0.01).
(B) Representative expanded crypts are
shown.
(C) Ileal crypts were isolated from Lgr5CreER
and VilCreER;Lgr5CreER;Stat5f/f mice. GFP
fluorescence and bright-field images of
single LGR5-GFP cells in 7-day-old enteroids
are shown. The data are representative of
three independent experiments.
Scale bars, 100 mm. See also Figure S3.
(Tam-RsCreER;icS5, hereafter called STAT5+++; Figure 4C),

which was mainly distributed in the ileal IESC and TA

zone (Figure 4B). BrdU incorporation and Ki67 staining

exhibited a pronounced crypt IEC proliferation compared

with sunflower oil-treated RsCreER;icS5, Tam-induced

icS5 (STAT5+/+), or Tam-induced VilCreER;Stat5f/f mice

(STAT5D/�; Figures 4D and 4E). In particular, more prolifer-

ative CBCs were observed in STAT5+++ mice than in

STAT5+/+ mice (insets in Figure 4D). These proliferating

crypt IECs led to an elongated ileal crypt depth (Figure 4F)

and villus height (Figures 4F and S5A) with enhanced IEC

growth (Figure 4H), suggesting that in vivo activation of

STAT5 enhances IESC self-renewal, leading to intestinal

growth. We then exposed STAT5+++ mice to 15 Gy radia-

tion. These mice exhibited milder mucositis compared

with oil-induced RsCreER;icS5 or Tam-induced icS5 mice

(Figure 4I). Intriguingly, 3.5 days after radiation, activation

of STAT5 in mice gave rise to more regenerated crypts (Fig-

ure 4J) with robust expression of STAT5a and BrdU+ IECs

(Figure S5B) compared with controls. Using Tam-inducible

Cre recombinase driven by the IEC-specificVillin promoter,
Stem Cell
STAT5 was inducibly activated in the IECs. We consistently

found that inducible activation of IEC STAT5 enhanced

CBC proliferation in the ileum and jejunum (quantified

as BrdU+ CBC per SC zone), and increased ileal crypt depth

and crypt regeneration (Figures S5C and S5D). These data

demonstrate that activation of IEC STAT5 may promote

more active IESCs, leading to functional crypt regenera-

tion. In contrast to depletion of IEC STAT5, activation of

IEC STAT5 reduced the expression of quiescent markers

(LRIG1 and DCLK1) as measured by IF and immunoblot-

ting, suggesting a diminished number of quiescent IESCs

in the STAT5-activated mice (Figure S5E). Therefore, our

data suggest that GOF of STAT5 promotes IESC regenera-

tion to repair intestinal injury.

STAT5 Activation Promotes IESC Self-Renewal,

Leading to Increased Crypt Expansion

To recapitulate our in vivo observation of STAT5 activation

upon IESC activity, we cultured IESCs from RsCreER;icS5

mice and then induced activation of STAT5 using Tam.

We found that STAT5 activation significantly enhanced
Reports j Vol. 4 j 209–225 j February 10, 2015 j ª2015 The Authors 215



Figure 4. STAT5 Activation Increases CBC Proliferation and Expands the IEC Progenitor Pool, Conferring Resistance to Radiation-
Induced Intestinal Injury
(A) Schematic representation of the BAC construct used to generate inducible GOF Stat5a. The endogenous Stat5a locus in transgenic BAC
is replaced by the icS5 construct in the ‘‘off’’ orientation. The transgene can be switched ‘‘on’’ upon recombination by Cre recombinase,
leading to the expression of icS5 under endogenous promoter regulation.

(legend continued on next page)
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crypt expansion (Figure 5A) along with a strongly upregu-

lated Lgr5 expression in the IESCs compared with control

enteroids (Figure 5B). We then crossed Lgr5CreER mice

with RsCreER;icS5 mice and cultured LGR5+ IESCs. Consis-

tently, FACS analysis showed that the frequency of LGR5+

IESCs was markedly increased by Tam-induced STAT5 acti-

vation (Figure 5C). These data suggest that STAT5 activa-

tion increases LGR5+ active IESC self-renewal. We then

sought to determine whether our finding that STAT5

signaling impacts the regulation of mouse IESC activity is

more broadly applicable to other SC types. To that end,

we selected H1 human ESCs (hESCs) to confirm the find-

ings from our adult mouse IESCs. We used lentivirus

harboring a Tam inducible STAT5a (STAT5a-ER* or icS5-

ER*; Figure S6A; Grebien et al., 2008) to transduce the

hESC cells. In this system, we were able to ectopically ex-

press activated STAT5 by addition of Tam (Figure 5D). We

found that STAT5 activation significantly increased LGR5

(Figure 5D) and promoted hESC cellular proliferation as as-

sessed by BrdU incorporation (Figure 5E), suggesting that

the ability of STAT5 to regulate SC activation in vitro is

not confined to mouse IESCs. Taken together, these results

indicate that activation of STAT5 can accelerate CBC prolif-

eration and enhance crypt formation and differentiation.

STAT5 Activation Increases Colonic IESC Growth in

Response to Colitis-Induced Epithelial Injury and

Ulceration

Dextran sodium sulfate (DSS)-induced colonic mucosal ul-

ceration can be repaired by direct implantation of LGR5+

IESCs or significantly improved by induction of IESC prolif-

eration (Ju et al., 2013; Yui et al., 2012). To explore the po-

tential for clinical application of genetic activation of Stat5,

we tested enhanced STAT5 activation upon experimental

colitis-induced IEC injury. We first tested the effect of

GOF of STAT5 on colonic IESCs in vivo. Similar to what

was observed for ileal IESCs, inducible activation of

STAT5 increased colonic IESC proliferation (Figures 6A

and 6B), colonic crypt depth, and growth compared with
(B and C) icS5 transgenic mice were crossed with RsCreER;icS5 mice.
(B) Tyrosine phosphorylated STAT5 (PY-STAT5) (pink, arrows) was de
(C) IECs were isolated from oil- or Tam-treated RsCreER;icS5 mice (S
blotting (n = 4 mice per group).
(D–H) Five days after Tam-induced STAT5 activation, IEC or CBC pr
staining. BrdU+ and Ki67+ IECs were quantified as positive IECs per IESC
IECs were markedly increased by activation of STAT5, in contrast to the
Representative images are shown in (D). Ileal growth was evaluated
cell count per ileal crypt (H) was measured using ImageJ. Results ar
***p < 0.001).
(I and J) Mice with inducible STAT5 activation were exposed to g-rad
crypt regeneration (J) were determined. Results are expressed as the
Scale bars, 50 mm. See also Figures S4 and S5.
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controls (Figures 6C and 6D). These data indicate that acti-

vation of STAT5 leads to colonic epithelial growth by pro-

moting IESC proliferation. We then exposed icS5 and

RsCreER;icS5 mice treated with oil or Tam to 3% DSS for

either a 7-day acute injury or a 5-day DSS exposure after

5-day water recovery (Gilbert et al., 2012). STAT5+++ mice

exhibited resistance to DSS-induced colonic mucosal

inflammation as characterized by lower histopathological

scores, less crypt loss, and smaller ulcer area compared

with controls (Figures 6E and 6F), but displayed mildly

increased immune cell infiltration. However, after water re-

covery, there was no significant difference in colonic histo-

logical score between STAT5+++ and control mice (Figures

S6B and S6C). These investigations further confirmed

that activation of STAT5 protects against colonic epithelial

injury, possibly through induction of colonic IESC growth.

Thus, STAT5 is a functional therapeutic target to improve

the regenerative response to gut inflammation.

STAT5 Binds Directly to the Bmi1 Locus and STAT5

Activation Represses Bmi1 Expression

Human colonic carcinoma Caco-2 cells spontaneously

differentiate into an enterocyte-like phenotype expressing

IESC markers such as LGR5 and BMI1 (Pereira et al., 2013).

To further explore the molecular mechanisms of how acti-

vated STAT5 enhances active IESC activity, we transduced

subconfluent Caco-2 cells with lentivirus harboring a

Tam-regulatable STAT5a (STAT5a-ER* or icS5-ER*; Fig-

ure S6A). Initially, we demonstrated that Tam exposure

stimulated the activation of STAT5 (Figure 7A). Given

that STAT5 plays a critical role in trans-activating or -repres-

sing target genes (Stine and Matunis, 2013), we then

scanned the Bmi1 locus for putative STAT5 binding sites us-

ing the inverted repeat consensus (TTC(N3)GAA). Compu-

tational prediction indicated that therewere seven putative

binding sites in the human Bmi1 locus (Tables S1A and S1B)

and 13 putative binding sites in the mouse Bmi1 locus

(Tables S2A and S2B). Based on these predictions, we

utilized chromatin immunoprecipitation (ChIP) assay to
RsCreER;icS5 mice were then injected with oil or Tam.
termined in intestine by IH.
TAT5+++), and PY-STAT5 and STAT5a were determined by immuno-

oliferation was determined by in situ BrdU incorporation or Ki67
zone (D) or per ileal crypt (E). Ki67+ CBCs (arrows in the insets) and
reduction of proliferating CBCs in STAT5-depleted crypts (D and E).
according to crypt depth (F) and villus length (G), and the total

e expressed as the mean ± SEM (n = 6 mice per group; **p < 0.01,

iation. At 3.5 days after the initial 15 Gy radiation, the RIS (I) and
mean ± SEM (n = 6 mice per group; *p < 0.05, **p < 0.01).
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Figure 5. STAT5 Activation Promotes IESC Activity, Increasing Crypt Expansion
Ileal and jejunal crypt crypts were isolated from icS5 and RsCreER;icS5 mice and cultured for 8 days; 200 nM 4HT was used to induce STAT5
activation during culture.

(legend continued on next page)
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study interactions between STAT5 protein and the Bmi1

locus. In Caco-2 cells, ChIP analysis with anti-STAT5 anti-

bodies or control immunoglobulin G (IgG) followed by

qPCR identified two GAS motifs (sites 2 and 4) in the

BMI1 locus that showed mild STAT5 binding enrichment

(Figure 7B) and in which the STAT5 binding intensity was

significantly elevated by genetic activation of STAT5 (Fig-

ure 7B). To test our finding with primary cells, we next

isolated mouse ileal crypts and subjected these crypts to

in vivo ChIP analysis with anti-FLAG antibodies or control

IgG to immunoprecipitate STAT5. We identified three GAS

motifs (sites 1, 2, and 4) that exhibited moderate STAT5

binding enrichment, and two binding sites (sites 1 and 4)

that revealed amarkedly increased STAT5 binding intensity

by genetic activation of STAT5 (Figure 7C). These ChIP data

indicate that STAT5 protein can bind to the Bmi1 locus, and

enhanced STAT5 protein activity correlates withmore Bmi1

locus binding. Finally, we measured Bmi1 mRNA expres-

sion. We found a significant reduction of Bmi1 mRNA

levels in ileal crypts of Stat5-activated mice compared

with wild-type controls (Figure 7D). Collectively, our data

suggest that activation of STAT5 controls IESC regeneration

in mouse small intestines and human colonic cells in part

through repression of Bmi1 expression.
DISCUSSION

IESCs and intestinal progenitor cells maintain intestinal

homeostasis and regeneration in response to gut injury

(Zhang et al., 2014). LGR5+ IESCs play a critical role in

intestinal homeostasis and regeneration (Metcalfe et al.,

2014; Van Landeghem et al., 2012). Interestingly, BMI1+

IESCs are able to replenish LGR5+ IESC upon small-intesti-

nal injury or regeneration (Yan et al., 2012). However, the

molecular mechanisms that regulate these two IESC popu-

lations remain largely unexplored.Mucosal cytokines regu-

late IESC responses to inflammation, in part by JAK-STAT

signaling (Farin et al., 2014; Jiang et al., 2009). In this study,
(A) The number of ileal crypt buds was counted per enteroid (n R 1
results are expressed as a graph of crypt buds versus time; the data are
was used to test for variance of two groups (*p < 0.05). Representat
(B) Lgr5 expression was analyzed by qPCR in 4HT-treated ileal enteroid
the mean ± SEM (n = 5 mice per group; *p < 0.05).
(C) The frequency of LGR5+ GFP cells was detected by FACS in 7-d
Lgr5CreER;icS5 mice. Results are expressed as the mean ± SEM (n = 4
(D and E) H1 hESCs were transduced with lentiviral vectors expressin
(D) After puromycin selection, 200 nM 4HT was used to induce STAT5 a
PY-STAT5, anti-LGR5, and anti-Tubulin immunoblottings.
(E) H1 hESCs (2 3 104 cells/ml) were seeded into 96-well plates an
represent three independent experiments and results are expressed a
Scale bars, 100 mm. See also Figure S6.
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we investigated whether cytokine-STAT5 signaling plays a

role in modulation of these two IESC populations during

IEC regeneration. Based on the combined results of our

LOF and GOF studies of STAT5 in murine models with

cultured mouse or human SCs, we propose a model in

which, first, loss of STAT5 impairs rapidly cycling IESCs (Fig-

ure 7E-I), and second, genetic activation of Stat5 promotes

CBCproliferation and regeneration (Figure 7E-II). However,

our current data cannot exclude the potential effects of

STAT5 signaling on intestinal progenitors or mucosal

cytokine secretion. Interestingly, ChIP analyses identified

STAT5 binding to the Bmi1 locus, suggesting that activated

STAT5 could directly regulate key genes involved in IESC

identity. Collectively, STAT5 controls adult IESC activity

upon intestinal injury. PY-STAT5 could be developed as a

biomarker for IESC regeneration of inflamed epithelia.

Previous studies have used acute irradiation-induced

injury models to provide mechanistic insight into the

regeneration process, revealing that actively proliferating

IESC (active IESC) and slowly proliferating IESC (quiescent

IESC) populations occur within the lower regions of the

crypt (Barker et al., 2007; Tian et al., 2011). Quiescent IESCs

can be activated to replenish injured active IESCs upon

high-dose irradiation (Tian et al., 2011). However, it is un-

clear which doses of irradiation can activate the quiescent

IESCs (Hua et al., 2012; Potten, 2004; Yan et al., 2012).

We found that 12 Gy irradiation did not completely ablate

all ileal crypt regeneration in STAT5�/� mice, whereas

15Gy irradiation significantly diminished the regeneration

of ileal crypts in STAT5�/� mice. Thus, we utilized 15 Gy

irradiation to investigate the effects of STAT5 LOF or GOF

on IESC regeneration and ‘‘microcolony’’ formation.

It was previously reported that conditional deletion of

HSC STAT5 results in loss of quiescence associated with

reduced survival and loss of the long-term HSC pool

(Wang et al., 2009). Conversely, hyperactivation of STAT5

increases erythroid differentiation, and low or intermedi-

ate activation of STAT5 enhances self-renewal of HSCs

(Wierenga et al., 2008). Interestingly, oncogenic NrasG12D
0) from each of six wells from three independent experiments. The
representative of three independent experiments. One-way ANOVA

ive images are shown; arrows indicate the expanded crypts.
s cultured from icS5 and RsCreER;icS5 mice. Results are expressed as

ay old enteroids cultured from Lgr5CreER;STAT5+/+ and RsCreER;
or 5 mice per group).
g STAT5a-ER* or icS5-ER* variants.
ctivation. Total proteins were then extracted for anti-STAT5a, anti-

d BrdU incorporation was used to measure cell proliferation. Data
s the mean ± SEM (*p < 0.05).
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Figure 6. STAT5 Activation Increases Colonic IESC Growth to Protect against Colitis-Induced Epithelial Injury and Ulceration
(A–D) Colonic IEC proliferation was determined by Ki67 IH (A), and Ki67+ colonic IECs were increased by inducible activation of STAT5 (B).
Colonic growth was measured by villus length (C) and total cell count per colonic crypt (D). Results are expressed as the mean ± SEM
(n = 8 mice per group; *p < 0.05, **p < 0.01).
(E and F) Colonic inflammation was induced by 3% DSS for 7 days. Hematoxylin and eosin staining revealed significant resistance to
DSS-induced colonic injury and ulceration in STAT5+++ mice. Ulcer area is designated by brackets in (E). Mucosal injury, colonic mucosal
ulceration, and crypt loss are scored in (F). Results are expressed as the mean ± SEM (n = 6 or 8 mice per group; *p < 0.05).
Scale bars, 50 mm. See also Figure S6.
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activation in HSCs defined a key role for STAT5 signaling in

mediating both the increased proliferation and engraft-

ment potential of NrasG12D/+ HSCs (Li et al., 2013). Here,

we demonstrated that depletion of IEC STAT5 caused

inhibition of CBC self-renewal, leading to limited crypt

expansion in the cultured enteroids. In contrast, ectopic

activation of STAT5 increased IESC proliferation and regen-

eration to promote crypt expansion. Therefore, STAT5

activity is required for IESC self-renewal and regenerative

activity. However, our finding does not rule out possible

effects of Stat5 depletion on IESC survival. In future studies,

we will further measure the efficiency of enteroid forma-

tion with single IESCs to determine the direct effects of

STAT5 on IESCs.

BMI1+ IESCs have a slower rate of proliferation compared

with LGR5+ IESCs and can give rise to all IEC lineages,

particularly during recovery from injury (Sangiorgi and

Capecchi, 2008; Yan et al., 2012). However, there is no clear

evidence of a cytokine-signaling pathway that regulates

their switch from quiescence to active cycling. Our data

show that deletion of IEC STAT5 led to increased expres-

sion of quiescent IESC makers in the crypts, suggesting

that quiescent IESCs could be activated in the STAT5�/�

mice. After exposure to radiation, STAT5 LOF mice dis-

played impaired crypt regeneration and developed more

severe mucositis compared with controls. These data sug-

gest that loss of STAT5 impairs IESC regenerative responses

to small-intestinal injury, possibly by hindering the con-

version from quiescent to active IESCs. In sharp contrast

to STAT5 LOF, STAT5 activation repressed BMI1, LRIG1,

and DCLK1 expression, and increased Lgr5 expression in

mouse and human SCs. Inducible activation of STAT5

increased CBC activity to promote crypt regeneration,

reducing radiation-induced mucosal injury. Interestingly,

we found several putative STAT5 binding sites in themouse

Bmi1 and human BMI1 loci. ChIP analysis with Bmi1-spe-

cific primers demonstrated that hyperactivation of STAT5

increased STAT5 binding affinity at the Bmi1 locus. Accord-

ingly, our data indicate that on the one hand, STAT5

signaling maintains IESC homeostatic proliferation, and

on the other hand, activated STAT5 signaling gives rise

to LGR5+ IESCs for injury-induced regeneration. These

data suggest a model (Figure 7E) in which activated

STAT5 signals promote IESC regeneration to reconstitute

the impaired IECs, possibly by converting quiescent IESCs

to active IESCs.

Intestinal secretory precursors can convert to IESCs upon

irradiation injury to regain stemness (van Es et al., 2012).

Interestingly, inhibition of CBC proliferation can induce

premature differentiation of CBCs into Paneth cells (Lee

et al., 2009).We found that depletion of Stat5 led to a reduc-

tion of LGR5+ IESCs coincidently with increased lysozyme+

Paneth cells in response to irradiation injury. Thus, these
Stem Cell
data suggest that STAT5 maintains IESC homeostasis in

part by mediating secretory lineage differentiation, in

addition to potential effects on quiescent IESCs. Further-

more, mucosal cytokine release could be critical for main-

taining IESC homeostasis and response to gut injury (Farin

et al., 2014). Our data demonstrate that activated STAT5

signaling increases IESC proliferation and regeneration

to mitigate intestinal inflammation, possibly by affecting

multiple intestinal compartments. In future studies, we

will investigate which upstream cytokines of STAT5 are

involved in the regulation of IESC responses to gut injury,

and how to increase IESC survival by activating Stat5.

Taken together, our results demonstrate an essential role

for STAT5 in the regulation of adult IESC homeostasis

and response to intestinal injury and regeneration. Func-

tionally, genetic activation of Stat5 increases IESC regener-

ation to replenish injured intestinal epithelia, conferring

resistance to intestinal inflammation. Mechanistically,

activated STAT5 could repress Bmi1 expression (a quiescent

IESC marker). Overall, our work will be beneficial to

obtainmolecular insights into diseases driven by persistent

enteric infection or inflammation.
EXPERIMENTAL PROCEDURES

Materials
All chemicals and antibodies used in this work are described in the

Supplemental Experimental Procedures.

Animal Resources and Maintenance
The animal study protocol was approved by theCHRF Institutional

Animal Care and Use Committee (IACUC2013-0051 1E03030,

Han). All mouse lines used in this work are listed in the Supple-

mental Experimental Procedures.

Radiation-Induced Injury Models and Animal Model

of Colitis
The radiation-induced injury models and animal model of colitis

are described in the Supplemental Experimental Procedures.

Enteroid Culture and Differentiation
Ileal and jejunal crypts were isolated and IESCs were differentiated

in vitro. Tam induction details are summarized in the Supple-

mental Experimental Procedures.

Immunoblotting, IF, IH, In Situ Hybridization, and

TUNEL Assay
Levels of LGR5, BMI1, LRIG1, DCLK1, Olfm4, Ascl2, and apoptosis

were measured in the tissues and cultured cells. Details are

described in the Supplemental Experimental Procedures.

Flow Cytometry
IEC isolation, LGR5+ IESC, and EdU FACS analyses are described in

the Supplemental Experimental Procedures.
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Figure 7. STAT5 Binds to the Bmi1 Locus to Repress Bmi1 Expression
(A) Subconfluent Caco-2 cells were transduced with lentiviral constructs expressing STAT5a-ER* or icS5-ER* variants. Then, 200 nM 4HT
was used to induce activation of STAT5 and total proteins were extracted for anti-STAT5a, anti-PY-STAT5, and anti-Tubulin immuno-
blotting. Data represent three independent experiments.
(B and C) Proteins and DNA complexes from Caco-2 cells or mouse ileal crypts were crosslinked, sheared, and immunoprecitated.

(legend continued on next page)
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Laser Capture Microdissection
Details regarding laser capturemicrodissection are described in the

Supplemental Experimental Procedures.

ChIP Assay and Real-Time qPCR
ChIP analyses are described in the Supplemental Experimental

Procedures.

hESC Maintenance, Lentiviral Transduction of hESCs,

and IEC Lines
pMSCV-STAT5a-ER* and pMSCV-icS5-ER* were cloned into lentivi-

ral plasmids. The federally approved WA01 (H1) ESCs and Caco-2

cell differentiation are described in the Supplemental Experi-

mental Procedures.

Statistical Analysis
Results are presented as the mean ± SEM. Data were analyzed by

one-way ANOVA and two-tailed Student’s t test, the Mann-Whit-

ney test (Prism; GraphPad) was used as appropriate, and p values

%0.05 were considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, six figures, and three tables and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.

2014.12.004.
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